544 research outputs found

    On the detection of gravitational waves through their interaction with particles in storage rings

    Get PDF
    It is shown that the interaction between a gravitational wave and ultra-relativistic bunches of particles in storage rings can produce a measurable effect on the non-Euclidean geometry of the space -time manifold of high energy rotating particles. Such an interaction causes simultaneous correlated deflections of bunches at different locations in a collider beam around the storage ring. T he radial deflection of a bunch of particles in a beam caused by a gravitational wave perpendicular to the surface of the ring is predicted to have a frequency equal to twice the revolution frequ ency of the bunch, and be modulated by the frequency of the gravitational wave. Using a system of beam position monitors (and possibly a streak camera), every bunch of particles can be monitored and its oscillations reconstructed so that a clear picture of the complete ring can be achieved at any moment. If the storage ring has two counter-rotating beams, noise effects can be reduced by measuring the difference, at a given point all along the beam, of the relative bunch deflections at both rings. The amplitude and frequency of the gravitational wave (and polarisation, if any) ca n then be deduced. Coincidence at different storage rings, with correlated radial deflection amplitudes and frequencies, are also expected. The position of the source can then be deduced. For gravitational waves with frequencies of the order of 100-1000 Hz and amplitudes of the order of 102010^{-20}-102310^{-23} the amplitude of the radial deflection can be as large as a milimeter, depen ding on the quality factor as a gravitational wave antenna and the parameters of the collider

    Neutrino Fluxes from NUHM LSP Annihilations in the Sun

    Full text link
    We extend our previous studies of the neutrino fluxes expected from neutralino LSP annihilations inside the Sun to include variants of the minimal supersymmetric extension of the Standard Model (MSSM) with squark, slepton and gaugino masses constrained to be universal at the GUT scale, but allowing one or two non-universal supersymmetry-breaking parameters contributing to the Higgs masses (NUHM1,2). As in the constrained MSSM (CMSSM) with universal Higgs masses, there are large regions of the NUHM parameter space where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate, and there are also large regions where the capture rate is not dominated by spin-dependent LSP-proton scattering. The spectra possible in the NUHM are qualitatively similar to those in the CMSSM. We calculate neutrino-induced muon fluxes above a threshold energy of 10 GeV, appropriate for the IceCube/DeepCore detector, for points where the NUHM yields the correct cosmological relic density for representative choices of the NUHM parameters. We find that the IceCube/DeepCore detector can probe regions of the NUHM parameter space in addition to analogues of the focus-point strip and the tip of the coannihilation strip familiar from the CMSSM. These include regions with enhanced Higgsino-gaugino mixing in the LSP composition, that occurs where neutralino mass eigenstates cross over. On the other hand, rapid-annihilation funnel regions in general yield neutrino fluxes that are unobservably small.Comment: 23 pages, 11 figures. v2: expanded threshold discussion, small changes to match PRD versio

    Neutrino Fluxes from CMSSM LSP Annihilations in the Sun

    Get PDF
    We evaluate the neutrino fluxes to be expected from neutralino LSP annihilations inside the Sun, within the minimal supersymmetric extension of the Standard Model with supersymmetry-breaking scalar and gaugino masses constrained to be universal at the GUT scale (the CMSSM). We find that there are large regions of typical CMSSM (m1/2,m0)(m_{1/2}, m_0) planes where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate. We show that neutrino fluxes are dependent on the solar model at the 20% level, and adopt the AGSS09 model of Serenelli et al. for our detailed studies. We find that there are large regions of the CMSSM (m1/2,m0)(m_{1/2}, m_0) planes where the capture rate is not dominated by spin-dependent LSP-proton scattering, e.g., at large m1/2m_{1/2} along the CMSSM coannihilation strip. We calculate neutrino fluxes above various threshold energies for points along the coannihilation/rapid-annihilation and focus-point strips where the CMSSM yields the correct cosmological relic density for tan(beta) = 10 and 55 for μ\mu > 0, exploring their sensitivities to uncertainties in the spin-dependent and -independent scattering matrix elements. We also present detailed neutrino spectra for four benchmark models that illustrate generic possibilities within the CMSSM. Scanning the cosmologically-favored parts of the parameter space of the CMSSM, we find that the IceCube/DeepCore detector can probe at best only parts of this parameter space, notably the focus-point region and possibly also at the low-mass tip of the coannihilation strip.Comment: 32 pages, 13 figures. v2: updated/expanded discussion of IceCube/DeepCor

    Dark Matter in SuperGUT Unification Models

    Full text link
    After a brief update on the prospects for dark matter in the constrained version of the MSSM (CMSSM) and its differences with models based on minimal supergravity (mSUGRA), I will consider the effects of unifying the supersymmetry-breaking parameters at a scale above M_{GUT}. One of the consequences of superGUT unification, is the ability to take vanishing scalar masses at the unification scale with a neutralino LSP dark matter candidate. This allows one to resurrect no-scale supergravity as a viable phenomenological model.Comment: 12 pages, 16 figures, To be published in the Proceedings of the 6th DSU Conference, Leon, Mexico, ed. D. Delepin

    Galactic-Centre Gamma Rays in CMSSM Dark Matter Scenarios

    Full text link
    We study the production of gamma rays via LSP annihilations in the core of the Galaxy as a possible experimental signature of the constrained minimal supersymmetric extension of the Standard Model (CMSSM), in which supersymmetry-breaking parameters are assumed to be universal at the GUT scale, assuming also that the LSP is the lightest neutralino chi. The part of the CMSSM parameter space that is compatible with the measured astrophysical density of cold dark matter is known to include a stau_1 - chi coannihilation strip, a focus-point strip where chi has an enhanced Higgsino component, and a funnel at large tanb where the annihilation rate is enhanced by the poles of nearby heavy MSSM Higgs bosons, A/H. We calculate the total annihilation rates, the fractions of annihilations into different Standard Model final states and the resulting fluxes of gamma rays for CMSSM scenarios along these strips. We observe that typical annihilation rates are much smaller in the coannihilation strip for tanb = 10 than along the focus-point strip or for tanb = 55, and that the annihilation branching ratios differ greatly between the different dark matter strips. Whereas the current Fermi-LAT data are not sensitive to any of the CMSSM scenarios studied, and the calculated gamma-ray fluxes are probably unobservably low along the coannihilation strip for tanb = 10, we find that substantial portions of the focus-point strips and rapid-annihilation funnel regions could be pressured by several more years of Fermi-LAT data, if understanding of the astrophysical background and/or systematic uncertainties can be improved in parallel.Comment: 33 pages, 12 figures, comments and references added, version to appear in JCA

    Measurement of event shape distributions and moments in e+e- -> hadrons at 91-209 GeV and a determination of alpha_s

    Full text link
    We have studied hadronic events from e+e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling alpha_s and test its evolution with energy scale. The results are consistent with the running of alpha_s expected from QCD. Combining all data, the value of alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +- 0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the moments is also used to determine a value of alpha_s with slightly larger errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016 (hadr.) +0.0054 -0.0036 (theo.).Comment: 63 pages 26 fi

    Determination of alpha_s using Jet Rates at LEP with the OPAL detector

    Full text link
    Hadronic events produced in e+e- collisions by the LEP collider and recorded by the OPAL detector were used to form distributions based on the number of reconstructed jets. The data were collected between 1995 and 2000 and correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates were determined using four different jet-finding algorithms (Cone, JADE, Durham and Cambridge). The differential two-jet rate and the average jet rate with the Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy range by fitting an expression in which order alpah_2s calculations were matched to a NLLA prediction and fitted to the data. Combining the measurements at different centre-of-mass energies, the value of alpha_s (Mz) was determined to be alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032(theo.) \.Comment: 40 pages, 17 figures, Submitted to Euro. Phys. J.

    Searches for Gauge-Mediated Supersymmetry Breaking Topologies in e+e- collisions at LEP2

    Get PDF
    In gauge-mediated supersymmetry (SUSY) breaking (GMSB) models the lightest supersymmetric particle (LSP) is the gravitino and the phenomenology is driven by the nature of the next-to-lightest SUSY particle (NLSP) which is either the lightest neutralino, the stau or mass degenerate sleptons. Since the NLSP decay length is effectively unconstrained, searches for all possible lifetime and NLSP topologies predicted by GMSB models in e+e- collisions are performed on the data sample collected by OPAL at centre-of-mass energies up to 209 GeV at LEP. Results independent of the NLSP lifetime are presented for all relevant final states including direct NLSP pair-production and, for the first time, also NLSP production via cascade decays of heavier SUSY particles. None of the searches shows evidence for SUSY particle production. Cross-section limits are presented at the 95% confidence level both for direct NLSP production and for cascade decays, providing the most general, almost model independent results. These results are then interpreted in the framework of the minimal GMSB (mGMSB) model, where large areas of the accessible parameter space are excluded. In the mGMSB model, the NLSP masses are constrained to be larger than 53.5 GeV/c^2, 87.4 GeV/c^2 and 91.9 GeV/c^2 in the neutralino, stau and slepton co-NLSP scenarios, respectively. A complete scan on the parameters of the mGMSB model is performed, constraining the universal SUSY mass scale Lambda from the direct SUSY particle searches: Lambda > 40, 27, 21, 17, 15 TeV/c^2 for messenger indices N=1, 2, 3, 4, 5 respectively, for all NLSP lifetimes.Comment: 4 pages, 2 figures. To appear in Proceedings of SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 200

    Search for Yukawa Production of a Light Neutral Higgs Boson at LEP

    Get PDF
    Within a Two-Higgs-Doublet Model (2HDM) a search for a light Higgs boson in the mass range of 4-12 GeV has been performed in the Yukawa process e+e- -> b bbar A/h -> b bbar tau+tau-, using the data collected by the OPAL detector at LEP between 1992 and 1995 in e+e- collisions at about 91 GeV centre-of-mass energy. A likelihood selection is applied to separate background and signal. The number of observed events is in good agreement with the expected background. Within a CP-conserving 2HDM type II model the cross-section for Yukawa production depends on xiAd = |tan beta| and xihd = |sin alpha/cos beta| for the production of the CP-odd A and the CP-even h, respectively, where tan beta is the ratio of the vacuum expectation values of the Higgs doublets and alpha is the mixing angle between the neutral CP-even Higgs bosons. From our data 95% C.L. upper limits are derived for xiAd within the range of 8.5 to 13.6 and for xihd between 8.2 to 13.7, depending on the mass of the Higgs boson, assuming a branching fraction into tau+tau- of 100%. An interpretation of the limits within a 2HDM type II model with Standard Model particle content is given. These results impose constraints on several models that have been proposed to explain the recent BNL measurement of the muon anomalous magnetic moment.Comment: 24 pages, 9 figures, Submitted to Euro. Phys. J.
    corecore